19ME3303-MATERIAL SCIENCE AND ENGINEERING

Offering Branches		ME			
Course Category:		Programme Core	Credits	3	
Course Type:		Theory	Lecture-	3-0-0	
			Tutorial-		
			Practical:		
Prerequisites:		19BS1204-Applied Physics	Continuous	30	
_		19BS1102-Chemistry of Materials	Evaluation:		
			Semester End	70	
			Evaluation:		
			Total Marks:	100	
Course C	Outcomes				
Upon suc	cessful completion	of the course, the student will be able	e to		
CO1	Identify the proper	ties of metals with respect to crystal s	structure and grain	size	
CO2	Interpret the phase	se diagrams of materials and de	scribe the concep	t of Stre	engthening
	Mechanisms				
CO3	Describe the conce	ept of heat treatment and Case harden	ing of steels		
CO4	Distinguish differe	nt types of steels, Tool and cast irons			
CO5	Explain Properties	and Applications of Nonferrous allog	ys and composite m	aterials	
		Course Content			
LINIT_1	Materials Scien	nce and Engineering: Introduc	tion, Classification	on of	CO1
01111-1	Materials, Mecha	anical Properties of Materials, Case	Study: Delhi Iron	Pillar	COI
	and Wootz Steel.				
	CRYSTALLOGRAPHY: Unit cell, Classification, Bravais Lattices, Packing				
	factor and coordination number in cubic systems, Miller Indices for Cubic				
	systems, imperfections in solids: Point, Line and Volume, Slip and				
	Twinning.Determination of grain size.				
UNIT-2	Mechanism of Ci	rystallization: Nuclei Formation, cry	stal growth		CO2
C 1111	CONSTITUTIO	N OF ALLOYS: Types of solid so	lution- substitution	al and	001
	interstitial solid so	olutions, Hume Rothery rules for solid	d solution.		
	PHASE DIAGRAMS: Phase, Phase equilibrium, Gibbs Phase rule – one				
	component system, two component system, Construction of binary phase				
	diagram, Isomorphous, eutectic, eutectoid, peritectic and peritectoid systems,				
	Fe-Fe ₃ C equilibriu	um diagram, Lever rule: Isomorphous	S.		
	STRENGTHENI	NG MECHANISMS: Grain Refin	ement, Strain hard	lening,	
	solid solution stre	ngthening, Dispersion strengthening.		1.0.07	
UNIT-3	HEAT TREAT	IENT PROCESSES: stages of heat	treatment, TTT and	d CCT	CO3
	diagram of eutec	toid steel, Annealing: Full Anneali	ing, Spherodizing,	Stress	
	Relief Annealing	, Process Annealing, Normalizing,	Hardening, Temp	pering,	
	Austempering, Ma	artempering.	1 1 . 0 1		
	Case HARDE	INING:Flame hardening, Induction	nardening, Carbu	rızıng,	
	Cyaniding, Nitridi	ing. LEGG STEPPI G F 141 M (141			
UNIT-4	SIEELS:STAIN	LESS SIEELS: Ferritic, Martensitio	c, Austenitic, Tool	steels:	CO4
	water Hardened,	, Shock Kesistance, Cold-Work,	HOT-WORK 1001	Steels,	
	Applications and I	Structure Decreation and April (one of White C	4	
	Mallachia Cost in	Structure, Properties and Application	ons of white Cas	i iron,	
	waneable Cast If	n, orey cast non, spheroidal graphit	e cast 11011.		
1					

	NON FEPROUS METALS AND ALLOVS: Properties and Applications of			
UNIT-5	CO5			
	Copper and its alloys: Cartridge Brass, Cupronickel, Gun Metal, Naval Brass,			
	Bell Metal, Speculum metal, Phosphor Bronze,			
	ALUMINIUM AND ITS ALLOYS: Duralumin, Hindalium, Magnalium,			
	Aluminium–Scandium,			
	TITANIUM AND ITS ALLOYS: α and Near α , β Alloys, α - β Alloys.			
	COMPOSITE MATERIALS: Classification of composites, particle reinforced			
	materials, fiber reinforced composite materials and metal matrix composites.			
	Learning Resources			
Text Books: 1. R. Balasubramaniam, Callister's, Material Science and Engineering,				
	2/e,WileyIndia,2014.			
2. S.H. Avner, Introduction to Physical Metallurgy, 2/e, Tata McGrawHill,				
Reference 1. Donald R. Askeland, "Essential of Materials Science and Engineering",				
Books:	Learning, 5th Edition – 2006			
	2. V.D. Kodgire, "Material Science and Metallurgy", Everest Publishing House - 25th			
Edition – 2009.				
3. B.K.Agarwal, "Introduction to Engineering Materials", Tata McGraw Hill-1s				
	4. V. Raghavan, "Material Science and Engineering", -PHI Learning - 5th Edition.			
E-Resource	tes 1. <u>http://materials.iisc.ernet.in/~wootz/heritage/WOOTZ.htm</u>			
& other	other 2. http://met.iisc.ernet.in/~rangu/text.pdf			
digital	ital 3. https://nptel.ac.in/courses/113106032/			
Material:	terial: 4. <u>https://nptel.ac.in/courses/113107078/</u>			
5. <u>http://vvm.org.in/study_material/ENG%20-%20Indian%20Contributions%20to%2</u>				

CourseCoordinator

HOD

PVP19

Code No:19ME3303 **PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY** (Autonomous)

II.B. Tech – I Semester Model Paper MATERIAL SCIENCE AND ENGINEERING (ME)

Duration:3 Hours

2

3 a

4 a

а

b

b

b Explain the

Max Marks:70

 $5 \times 12 = 60$ Marks

Note: 1. This question paper contains two papers Part A and B.

2.Part A is compulsory which carries 10 marks. Answer all questions in part A.

3.Part B consists of 5 units. Answer any one full question from each unit. Each

question carries 12 marks and may have a, b, c as sub questions.

4.All parts of question paper must be answered in one place.

PART-A

		$5 \times 2 = 10$	Marks
		Blooms	CO
		Level	
1.a)	Explain the reason for high corrosion resistance in he iron pillar of	2	CO1
	Delhi		
1.b)	What is meant by solid solution?	2	CO2
1.c)	Can you explain what is happening in Annealing?	2	CO3
1.d)	Give examples of the use of Austenitic Stainless Steels field.	2	CO4
1.e)	Write any two strategic applications of α - β Titanium alloys.	1	CO5

PART-B

		0010	
	Blooms	CO	Max.
	Level		Mark
UNIT-I			
You would like to develop an aircraft. What types of material			
properties would you recommend? What materials might be appropriate?	2	CO1	6
Explain the difference between slip and twinning mechanisms	2	CO1	6
OR	. <u></u>		
Write about Wootz steel "An advanced material of the ancient	1	CO1	6
world" (6th century B.C).	1	COI	0
Discuss on Edge and Screw Dislocations with neat sketches	2	CO1	6
UNIT-II			
What is a solid solution? What are the conditions for forming	2	CO2	6
extensive solid solubility of one element in another?	2	02	0
Explain the principle of grain-sizestrengthening. Does this mechanism workat high temperatures? Explain.	2	CO2	6

	mechanism workat high temperatures? Explain.	2	02	0
OR				
a	Explain various invariant reactions in the Fe-Fe ₃ C system with	2	CO2	6
	a neat sketch.			
b	Can you explain how hardness increases in Non-Heat treatable	2	CO2	6
	alloys after strain hardening.			
UNIT-III				
a	Define the term heat treatment. Illustratethe TTT diagram for	2	CO3	6
	1080 steel and label its phases and highlight its significance.	2	COS	0
b	Explain the contrast between	2	CO2	6
	i) Annealing and Normalizing, ii) Carburizing and Nitriding.	L	005	0
	a b b	mechanism workat high temperatures? Explain. OR a Explain various invariant reactions in the Fe-Fe ₃ C system with a neat sketch. b Can you explain how hardness increases in Non-Heat treatable alloys after strain hardening. UNIT-III a Define the term heat treatment. Illustratethe TTT diagram for 1080 steel and label its phases and highlight its significance. b Explain the contrast between i) Annealing and Normalizing, ii) Carburizing and Nitriding.	mechanism workat high temperatures? Explain. 2 OR a Explain various invariant reactions in the Fe-Fe ₃ C system with a neat sketch. 2 b Can you explain how hardness increases in Non-Heat treatable alloys after strain hardening. 2 UNIT-III a Define the term heat treatment. Illustratethe TTT diagram for 1080 steel and label its phases and highlight its significance. 2 b Explain the contrast between i) Annealing and Normalizing, ii) Carburizing and Nitriding. 2	mechanism workat high temperatures? Explain. 2 CO2 OR a Explain various invariant reactions in the Fe-Fe ₃ C system with a neat sketch. 2 CO2 b Can you explain how hardness increases in Non-Heat treatable alloys after strain hardening. 2 CO2 UNIT-III a Define the term heat treatment. Illustratethe TTT diagram for 1080 steel and label its phases and highlight its significance. 2 CO3 b Explain the contrast between i) Annealing and Normalizing, ii) Carburizing and Nitriding. 2 CO3

PVP Siddhartha Institute of Technology

		OR				
7	a	Describe the following heat treatments:	1	CO3	6	
		(a) Hardening (b) Tempering.	1	005	0	
	b	Discuss on Flame hardening and Induction hardening.	2	CO3	6	
		UNIT-IV				
8	a	Examine why are stainlesssteels are stainless?and distinguish	4	COA	6	
		a) Ferritic b) Martensitic c)Austenitic stainless steels.	4	004		
	b	Can you identify any difference between cast ironand steel? and		COA	6	
		explain applications of ductile cast iron.	4	004	0	
	OR					
9	a	Summarize the properties and applications of Cold worked and			6	
		Hot Worked tool steels.	3	004	0	
	b	Can you make a distinction between grey and white cast iron?	4	CO4	6	
UNIT-V						
10	a	Explain the properties and applications of copper.	1	CO5	6	
	b	What are the applications of Aluminium Scandium alloy?	1	CO5	6	
OR						
11	a	Describe the biomedical applications of Titanium and its alloys.	1	CO5	6	
	b	What is Particle-reinforced and Fiber-reinforced composite.	1	CO5	6	

Course coordinator

HOD